Salud Mental

Design, reliability, and validity of the acceptability of internet-based psychological interventions questionnaire in Mexican university students

##plugins.themes.bootstrap3.article.main##

Raquel Mondragón Gómez
Nora Angélica Martínez Vélez
Marcela Tiburcio Sainz
Morise Fernández Torres

Abstract

Introduction. Internet-based psychological interventions are an effective option for treating mental health problems. Identifying the acceptability of these services makes it possible to improve their design and user adherence. However, only a few psychometric instruments exist to evaluate this acceptability.

Objective. To design and evaluate the psychometric properties of an internet-based psychological interventions questionnaire, based on the theory of technology acceptance.

Method. The study was divided into three parts: 1) Design of instrument items, 2) analysis of psychometric properties and exploratory factor analysis, and 3) confirmatory factor analysis.

Results. The instrument proved to have adequate psychometric properties, with the following goodness-of-fit measurements: χ2/df = 168.92/74 = 2.28, CFI = .935, TLI = .920, RMSEA = .080, 95% CI [.64, .096]. The analysis of internal consistency found an α = .91 for the total scale, an α = .91 for the first factor, “Approval of use,” an α = .79 for the second factor, “Perceived usefulness,” and an α = .59 for the third factor, “Perceived risk.”

Discussion and conclusion. The evaluation of factors associated with greater acceptability is a potential tool for improving awareness of the use of online psychological interventions.

Keywords:
Internet-based interventions, acceptability, internet, users of mental health services, eMental Health

References

Abolade, T. O., & Durosinmi, A. E. (2018). The Benefits and Challenges of E-Health Applications in Developing Nations: A Review. In Proceedings of the 14th ISTEAMS International Multidisciplinary Conference. Ilorin, Nigeria: AlHikmah University.

Arenas-Landgrave, P., de la Rosa-Gómez, A., Carreón-Martínez, A. E., Esquivel-González, D., Martínez-Luna, S. C., Hernández-Aguirre, O., Olivares-Avila, S. M., Plata-Ochoa, A.Y., González-Santiago, E., & Domínguez-Rodríguez, A. (2022). Atención psicológica vía chat desde una plataforma de salud mental ante la COVID-19. Revista de Investigación en Psicología, 25(2), 185-202. doi: 10.15381/rinvp.v25i2.22916

Arjadi, R., Nauta, M. H., & Bockting, C. L. (2018). Acceptability of internet-based interventions for depression in Indonesia. Internet Interventions, 13, 8-15. doi: 10.1016/j.invent.2018.04.004

Asociación Mexicana de Internet [AMIPCI]. (2016). 12 – Estudio sobre los Hábitos de los usuarios de internet en México 2016. Retrieved from https://www.asociaciondeinternet.mx/estudios/habitos-de-internet

Asociación Mexicana de Internet [AMIPCI]. (2018). 14 – Estudio sobre los Hábitos de los usuarios de internet en México 2018. Retrieved from https://www.asociaciondeinternet.mx/estudios/habitos-de-internet

Banna, S., Hasan, H., & Meloche, J. (2010). A subjective evaluation of attitudes towards E-health. The 2010 International Conference on Innovation and Management. Taiwan: EBRC.

Blankers, M. (2011). E-Mental Health Interventions for Harmful Alcohol Use: Research Methods and Outcomes [Doctoral Dissertation]. Amsterdam: University of Amsterdam.

Davis, F. (1989). Perceived Usefulness, Perceived Ease of use and User Acepptance of Information Technology. MIS Quarterly, 319-340. doi: 10.2307/249008

de la Rosa-Gómez, A., & Waldherr, K. (2023). Highlights in digital mental health 2021/22. Frontiers in Digital Health, 4, 1093375. doi: 10.3389/fdgth.2022.1093375

de la Rosa-Gómez, A., Moreyra, L., & De la Rosa-Montealvo, N. (2020). Intervenciones eficaces vía internet para la salud emocional en adolescentes: una propuesta ante la pandemia por COVID-19. Hamut´ay, 7(2), 18-33. doi: 10.21503/hamu.v7i2.2128

Dinesen, B., Huniche, L., & Toft, E. (2013) Attitudes of COPD patients towards tele-rehabilitation: across-sector case study. International Journal of Environmental Research and Public Health, 10(11), 6184-98. doi: 10.3390/ijerph10116184

Dominguez-Rodriguez, A., Sanz-Gomez, S., González Ramírez, L. P., Herdoiza-Arroyo, P. E., Trevino Garcia, L. E., de la Rosa-Gómez, A., González-Cantero, J. O., Macias-Aguinaga, V., & Miaja, M. (2023). The Efficacy and Usability of an Unguided Web-Based Grief Intervention for Adults Who Lost a Loved One During the COVID-19 Pandemic: Randomized Controlled Trial. Journal of Medical Internet Research, 25, e43839. doi: 10.2196/43839

Ellis, D. M., & Anderson, P. L. (2023). Validation of the Attitudes Towards Psychological Online Interventions Questionnaire Among Black Americans: Cross-cultural Confirmatory Factor Analysis. JMIR Mental Health, 10, e43929. doi: 10.2196/43929

Fishbein M., & Ajzen, I. (1980). Understanding attitudes and predicting social behavior. Londres: Prentice Hall International.

Frueh, B. C., Henderson, S., & Myrick, H. (2005). Telehealth service delivery for persons with alcoholism. Journal of Telemedicine and Telecare, 11(7), 372-375. doi: 10.1258/135763305774472060

Hu, L. T., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling: A Multidisciplinary Journal, 6(1), 1-55.

Jung, M., & Loria, K. (2010). Acceptance of Swedish e-health services. Journal of Multidisciplinary Healthcare, 3, 55-63. Retrieved from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3024889/

Kok, G., Bockting, C., Burger, H., Smit, F., & Riper, H (2014). Mobile Cognitive Therapy: Adherence and acceptability of an online intervention in remitted recurrently depressed patients. Internet Interventions, 1(2), 65-73. doi: 10.1016/j.invent.2014.05.002

Lamela, D., Cabral, J., Coelho, S., & Jongenelen, I. (2020). Personal stigma, determinants of intention to use technology, and acceptance of internet-based psychological interventions for depression. International Journal of Medical Informatics, 136, 104076. doi: 10.1016/j.ijmedinf.2020.104076

Lara, M. A., Patiño, P., Tiburcio, M., & Navarrete, L. (2022). Satisfaction and acceptability ratings of a web-based self-help intervention for depression: retrospective cross-sectional study from a resource-limited country. JMIR Formative Research, 6(4), e29566. doi: 10.2196/29566

Lee, J., Nguyen, A., Berg, A., Amin, A., Bachman, M., Guo, Y., & Evangelista, L. (2014). Attitudes and Preferences on the Use of Mobile Health Technology and Health Games for Self-Managment: Interviews with older adults on anticoagulation therapy. JMIR Mhealth and Uhealth, 2(3), e32. doi: 10.2196/mhealth.3196

Mohr, D., Schueller, S., Montague, E., Burns, M. N., & Rashidi, P. (2014) The Behavioral Intervention Technology Model: An Integrated Conceptual and Technological Framework for eHealth and mHealth Interventions. Journal of Medical Internet Research, 16(6), 1-15. doi: 10.2196/jmir.3077

Molloy, A., & Anderson, P. L. (2021). Increasing Acceptability and Outcome Expectancy for Internet-Based Cognitive Behavioral Therapy During the COVID-19 Pandemic. Telemedicine and e-Health, 28(6), 888-895. doi: 10.1089/tmj.2021.0393

Morland, L. A., Mackintosh, M. A., Rosen, C. S., Willis, E., Resick, P., Chard, K., & Frueh, B. C. (2015). Telemedicine versus in‐person delivery of cognitive processing therapy for women with posttraumatic stress disorder: A randomized noninferiority trial. Depression and Anxiety, 32(11), 811-820. doi: 10.1002/da.22397

Musiat, P., Goldstone, P., & Tarrier, N. (2014). Understanding the acceptability of e-mental health:attitudes and expectations towards computerised self-help treatments for mental health problems. BMC Psychiatry, 14(1), 1-8. doi: 10.1186/1471-244X-14-109

Neuendorf, K. A. (2019). Content analysis and thematic analysis. In P. Brough (Ed.). Advanced, research methods for applied psychology: Design, analysis and reporting (pp. 211-223). New York: Routledge.

Ng, M. M., Firth, J., Minen, M., & Torous, J. (2019). User Engagement in Mental Health Apps: A Review of Measurement, Reporting, and Validity. Psychiatric Services, 70(7), 538-544. doi: 10.1176/appi.ps.201800519

Olden, M., Wyka, K., Cukor, J., Peskin, M., Altemus, M., Lee, F. S., Finkelstein-Fox, L., Rabinowitz, T., & Difede, J. (2017). Pilot study of a telehealth-delivered medication-augmented exposure therapy protocol for PTSD. The Journal of Nervous and Mental Disease, 205(2), 154-160. doi: 10.1097/NMD.0000000000000563

Pavlou, P. (2003). Consumer Acceptance of Electronic Commerce: Integrating Trust and Risk with the Technology Acceptance Model. International Journal of Electronic Commerce, 7(3), 101-134. doi: 10.1080/10864415.2003.11044275

Rogers, C. R. (1963). Toward a science of the person. Journal of Humanistic Psychology, 3(2), 72-92.

Rojas-Jara, C., Polanco-Carrasco, R., Caycho-Rodríguez, T., Muñoz-Vega, C., Muñoz-Marabolí, M., Luna-Gómez, T., & Muñoz-Torres, T. (2022). Telepsicología para psicoterapeutas: lecciones aprendidas en tiempos del Covid-19. Revista Interamericana de Psicología/Interamerican Journal of Psychology, 56(2), e1733. doi: 10.30849/ripijp.v56i2.1733

Santana, L., & Fontenelle, L.F.(2011). A review of studies concerning treatment adherence of patients with anxiety disorders. Patient Preference and Adherence, 5, 427-439. doi: 10.2147/PPA.S23439

Schaub, M. P., Tiburcio, M., Martínez-Vélez, N., Ambekar, A., Bhad, R., Wenger, A., Baumgartner, C., Padruchny, D., Osipchik, S., Poznyak, V., Rekve, D., Landi Moraes F., Monezi Andrade A. L., Souza-Formigoni, M. L. O., & WHO E-Health Project On Alcohol And Health Investigators Group. (2021). The effectiveness of a web-based self-help program to reduce alcohol use among adults with drinking patterns considered harmful, hazardous, or suggestive of dependence in four low-and middle-income countries: randomized controlled trial. Journal of Medical Internet Research, 23(8), e21686. doi: 10.2196/21686

Scheibner, J., Sleigh, J., Ienca, M., & Vayena, E. (2021). Benefits, challenges, and contributors to success for national eHealth systems implementation: a scoping review. Journal of the American Medical Informatics Association, 28(9), 2039-2049. doi: 10.1093/jamia/ocab096

Schröder, J., Sautier, L., Kriston, L., Berger, T., Meyer, B., Späth, C., Köther, U., Nestoriuc, Y., Klein, J. P., & Moritz, S. (2015). Development of a questionnaire measuring Attitudes towards Psychological Online Interventions-the APOI. Journal of Affective Disorders, 187, 136-141. doi: 10.1016/j.jad.2015.08.044

Simon, N., McGillivray, L., Roberts, N. P., Barawi, K., Lewis, C. E., & Bisson, J. I. (2019). Acceptability of internet-based cognitive behavioural therapy (i-CBT) for post-traumatic stress disorder (PTSD): a systematic review. European Journal of Psychotraumatology, 10(1), 1646092. doi: 10.1080/20008198.2019.1646092

Simon, S., Evans, S., Benjamin, A., Delano, D. & Bates, D. (2009). Patients´Attitudes Toward Electronic Health Information Exchange: Qualitive Study. Journal of Medical Internet Research, 11(3), 132-139. doi: 10.2196/jmir.1164

Sobowale, K., Nguyen, M., Weiss, B., Van, T. H., & Trung, L. T. (2016). Acceptability of internet interventions for youth mental health in Vietnam. Global Mental Health, 3, e22. doi: 10.1017/gmh.2016.18

Tiburcio, M., Lara, M., Martínez, N., Fernández, M., & Aguilar, A. (2018) Web-Based Intervention to Reduce Substance Abuse and Depression: A Three Arm Randomized Trial in Mexico. Substance Use & Misuse, 53(13) 2220-2231. doi: 10.1080/10826084.2018.1467452

Venkatesh, V., & Davis, F. (2000). A Theorical Extension of the Technology Acceptance Model: Four Longitudinal Field Studies. Management Science, 46(2), 186-204. doi: 10.1287/mnsc.46.2.186.11926

Venkatesh, V., Morris, M., Davis, G., Davis, F. (2003). User acceptance of information technology: toward a unified view. MIS Quarterly, 27(3), 425-478. doi: 10.2307/30036540

World Health Organization. (2016). Global diffusion of eHealth: making universal health coverage achievable. Report of the third global survey on eHealth. Geneva: World Health Organization.

Zhang, X., Yu, P., Yan, J., & Spil, I. (2015). Using diffusion of innovation theory to understand the factors impacting patient acceptance and use of consumer e-health innovations: a case study in a primary care clinic. BMC Health Services Research, 15, 1-15. doi: 10.1186/s12913-015-0726-2