Salud Mental

Effect of postictal process in motor deficit and monoaminergic concentration in hippocampus, cerebellum, and cortex

##plugins.themes.bootstrap3.article.main##

Alberto Avila-Luna
Antonio Bueno-Nava
José Luis Cortes-Altamirano
Samuel Reyes-Long
Cindy Bandala
Alfonso Alfaro-Rodríguez

Resumen

Introducción. La administración sistémica de pentilentetrazol (PTZ) causa daño cerebral y desencadena una serie de cambios morfológicos y neuroquímicos que a su vez provocan déficits conductuales, cognitivos y motores. Los niveles de serotonina (5-HT), dopamina (DA) y noradrenalina (NA) son modulados por varias estructuras cerebrales y sus concentraciones se relacionan con la actividad motora; sin embargo, se desconoce la concentración de estos neurotransmisores durante el proceso postictal.

Objetivo. Evaluar la manera en que la concentración de 5-HT, NA y DA en el hipocampo, el cerebelo y la corteza influye en el déficit motor durante la etapa postictal.

Método. Se utilizaron 18 ratas macho Wistar (300 g), divididas en dos grupos: control (n = 9, solución salina) y experimental (n = 9, PTZ). Se registraron las sacudidas mioclónicas y se evaluó el comportamiento motor durante tres horas después de la inyección de PTZ (90 mg/kg). Se extrajeron la corteza, el cerebelo y el hipocampo de cada rata para determinar la concentración de 5-HT, DA y NA mediante cromatografía líquida de alta resolución.

Resultados. La administración de PTZ indujo un aumento significativo en los niveles totales de 5-HT y DA en el hipocampo y la corteza; en el cerebelo hubo un aumento significativo en la concentración de 5-HT y NA. Se encontró una diferencia significativa entre el grupo experimental y control con respecto a las sacudidas mioclónicas; asimismo, los animales del grupo experimental mostraron un marcado déficit motor.

Discusión y conclusión. La 5-HT modula la concentración de otras monoaminas involucradas directamente en aspectos motores tal como NA y DA en el hipocampo, el cerebelo y la corteza durante el proceso postictal.
Palabras clave:
Pentilentetrazol, serotonina, monoaminas, postictal, deficit motor, rata

Referencias

Adamec, R., Burton, P., Blundell, J., Murphy, D. L., & Holmes, A. (2006). Vulnerability to mild predator stress in serotonin transporter knockout mice. Behavioural Brain Research, 170(1), 126-140. doi: 10.1016/j.bbr.2006.02.012

Ahmadi, M., Dufour, J. P., Seifritz, E., Mirnajafi-Zadeh, J., & Saab, B. J. (2017). The PTZ kindling mouse model of epilepsy exhibits exploratory drive deficits and aberrant activity amongst VTA dopamine neurons in both familiar and novel space. Behavioural Brain Research, 330, 1-7. doi: 10.1016/j.bbr.2017.05.025

Becker, A., Grecksch, G., Thiemann, W., & Höllt, V. (2000). Pentylenetetrazol-kindling modulates stimulated dopamine release in the nucleus accumbens of rats. Pharmacology Biochemistry and Behavior, 66(2), 425-428. doi: 10.1016/S0091-3057(99)00264-6

Bhagya, V., Srikumar, B. N., Raju, T. R., & Shankaranarayana Rao, B. S. (2015). The selective noradrenergic reuptake inhibitor reboxetine restores spatial learning deficits, biochemical changes, and hippocampal synaptic plasticity in an animal model of depression. Journal of Neuroscience Research, 93(1), 104-120. doi: 10.1002/jnr.23473

Brailowsky, S., Knight, R. T., Blood, K., & Scabini, D. (1986). γ-Aminobutyric acid-induced potentiation of cortical hemiplegia. Brain Research, 362(2), 322-330. doi: 10.1016/0006-8993(86)90457-9

Bueno-Nava, A., Gonzalez-Pina, R., Alfaro-Rodriguez, A., Nekrassov-Protasova, V., Durand-Rivera, A., Montes, S., & Ayala-Guerrero, F. (2010). Recovery of motor deficit, cerebellar serotonin and lipid peroxidation levels in the cortex of injured rats. Neurochemical Research, 35(10), 1538-1545. doi: 10.1007/s11064-010-0213-4

Bueno-Nava, A., Montes, S., DelaGarza-Montano, P., Alfaro-Rodriguez, A., Ortiz, A., & Gonzalez-Pina, R. (2008). Reversal of noradrenergic depletion and lipid peroxidation in the pons after brain injury correlates with motor function recovery in rats. Neuroscience Letters, 443(1), 32-36. doi: 10.1016/j.neulet.2008.07.046

Dempesy, C. W., Tootle, D. M., Fontana, C. J., Fitzjarrell, A. T., Garey, R. E., & Heath, R. G. (1983). Stimulation of the paleocerebellar cortex of the cat: increased rate of synthesis and release of catecholamines at limbic sites. Biological Psychiatry, 18(1), 127-132.

Eraković, V., Župan, G., Varljen, J., & Simonić, A. (2003). Pentylenetetrazol-induced seizures and kindling: changes in free fatty acids, superoxide dismutase, and glutathione peroxidase activity. Neurochemistry International, 42(2), 173-178. doi: 10.1016/S0197-0186(02)00070-0

Felger, J. C., & Treadway, M. T. (2017). Inflammation effects on motivation and motor activity: role of dopamine. Neuropsychopharmacology, 42(1), 216-241. doi: 10.1038/npp.2016.143

Folbergrová, J., Ingvar, M., & Siesjö, B. K. (1981). Metabolic changes in cerebral cortex, hippocampus, and cerebellum during sustained bicuculline‐induced seizures. Journal of Neurochemistry, 37(5), 1228-1238. doi: 10.1111/j.1471-4159.1981.tb04673.x

Franke, H., & Kittner, H. (2001). Morphological alterations of neurons and astrocytes and changes in emotional behavior in pentylenetetrazol-kindled rats. Pharmacology Biochemistry and Behavior, 70(2-3), 291-303. doi: 10.1016/S0091-3057(01)00612-8

Gholipour, T., Ghasemi, M., Riazi, K., Ghaffarpour, M., & Dehpour, A. R. (2010). Seizure susceptibility alteration through 5-HT3 receptor: modulation by nitric oxide. Seizure, 19(1), 17-22. doi: 10.1016/j.seizure.2009.10.006

Goldstein, L. B. (2006). Neurotransmitters and motor activity: effects on functional recovery after brain injury. NeuroRx, 3(4), 451-457. doi: 10.1016/j.nurx.2006.07.010

González-Piña, R., & Paz, C. (1997). Brain monoamine changes in rats after short periods of ozone exposure. Neurochemical Research, 22(1), 63-66. doi: 10.1023/A:1027329405112

González-Piña, R., Bueno-Nava, A., Montes, S., Alfaro-Rodriguez, A., Gonzalez-Maciel, A., Reynoso-Robles, R., & Ayala-Guerrero, F. (2005). Pontine norepinephrine content after motor cortical ablation in rats. Proceedings of the Western Pharmacology Society, 48,73-76.

Haring, J. H. (1991). Reorganization of the area dentata serotoninergic plexus after lesions of the median raphe nucleus. Journal of Comparative Neurology, 306(4), 576-584. doi: 10.1002/cne.903060404

Harris, D., Schevon, C., & Bateman, L. (2017). Postictal Clinical Features of Focal Dyscognitive Seizures (P4. 074). Neurology, 88(16 Supplement), P4-074. ISSN:1526-632X

Hruska, R. E., Kennedy, S., & Silbergeld, E. K. (1979). Quantitative aspects of normal locomotion in rats. Life Sciences, 25(2), 171-179. doi: 10.1016/0024-3205(79)90389-8

Huang, R. Q., Bell-Horner, C. L., Dibas, M. I., Covey, D. F., Drewe, J. A., & Dillon, G. H. (2001). Pentylenetetrazole-induced inhibition of recombinant γ-aminobutyric acid type A (GABAA) receptors: mechanism and site of action. Journal of Pharmacology and Experimental Therapeutics, 298(3), 986-995.

Institute of Laboratory Animal Resources (US). Committee on Care, Use of Laboratory Animals, & National Institutes of Health (US). Division of Research Resources. (1985). Guide for the care and use of laboratory animals. National Academies.

Kalynchuk, L. E. (2000). Long-term amygdala kindling in rats as a model for the study of interictal emotionality in temporal lobe epilepsy. Neuroscience & Biobehavioral Reviews, 24(7), 691-704. doi: 10.1016/S0149-7634(00)00031-2

Koyuncuoglu, T., Vızdıklar, C., Üren, D., Yılmaz, H., Yıldırım, Ç., Atal, S. S., ...Yeğen, B. Ç. (2017). Obestatin improves oxidative brain damage and memory dysfunction in rats induced with an epileptic seizure. Peptides, 90, 37-47. doi: 10.1016/j.peptides.2017.02.005

Kulkarni, S. K., & George, B. (1995). Pentylenetetrazol-induced kindling in animals: protective effect of BR-16A. Indian Journal of Experimental Biology, 33(6), 424-427.

Lee, M., Ryu, Y. H., Cho, W. G., Kang, Y. W., Lee, S. J., Jeon, T. J., ... Choi, T. H. (2015). Relationship between dopamine deficit and the expression of depressive behavior resulted from alteration of serotonin system. Synapse, 69(9), 453-460. doi: doi.org/10.1002/syn.21834

Löscher, W. (2017). Animal models of seizures and epilepsy: past, present, and future role for the discovery of antiseizure drugs. Neurochemical Research, 42(7), 1873-1888. doi: 10.1007/s11064-017-2222-z

MacDonald, R. L., & Barker, J. L. (1977). Pentylenetetrazol and penicillin are selective antagonists of GABA-mediated post-synaptic inhibition in cultured mammalian neurones. Nature, 267(5613), 720-721. doi: 10.1038/267720a0

Marcinkiewicz, M., Morcos, R., & Chretien, M. C. N. S. (1989). CNS connections with the median raphe nucleus: Retrograde tracing with WGA‐apoHRP‐gold complex in the rat. Journal of Comparative Neurology, 289(1), 11-35. doi: 10.1002/cne.902890103

Meldrum, B. (2002). Do preclinical seizure models preselect certain adverse effects of antiepileptic drugs. Epilepsy Research, 50(1-2), 33-40. doi: 10.1016/S0920-1211(02)00066-9

Newman, P. P., & Reza, H. (1979). Functional relationships between the hippocampus and the cerebellum: an electrophysiological study of the cat. The Journal of Physiology, 287(1), 405-426. doi: 10.1113/jphysiol.1979.sp012667

Norma Oficial Mexicana NOM-062-ZOO-1999. (2001). Especificaciones técnicas para la producción, cuidado y uso de los animales de laboratorio. Retrieved from: http://www.gob.mx/cms/uploads/attachment/file/203498/NOM-062-ZOO-1999_220801.pdf

Pérez-García, G., Liy-Salmerón, G., & Meneses, A. (2006). Receptores serotonérgicos y memoria. Revista Mexicana de Análisis de la Conducta, 32(2), 241-269. ISSN: 0185-4534

Peterson, S. L., & Albertson, T. E. (1998). Neuropharmacology methods in epilepsy research. CRC press. ISBN 13: 978-0-8493-3362-0

Sarkisian, M. R. (2001). Overview of the current animal models for human seizure and epileptic disorders. Epilepsy & Behavior, 2(3), 201-216. doi: 10.1006/ebeh.2001.0193

Shouse, M. N., Staba, R. J., Ko, P. Y., Saquib, S. F., & Farber, P. R. (2001). Monoamines and seizures: microdialysis findings in locus ceruleus and amygdala before and during amygdala kindling. Brain research, 892(1), 176-192. doi: 10.1016/S0006-8993(00)03292-3

Szyndler, J., Rok, P., Maciejak, P., Walkowiak, J., Członkowska, A. I., Sienkiewicz-Jarosz, H., ... Kostowski, W. (2002). Effects of pentylenetetrazol-induced kindling of seizures on rat emotional behavior and brain monoaminergic systems. Pharmacology Biochemistry and Behavior, 73(4), 851-861. doi: 10.1016/S0091-3057(02)00912-7

Weinshenker, D., & Szot, P. (2002). The role of catecholamines in seizure susceptibility: new results using genetically engineered mice. Pharmacology & Therapeutics, 94(3), 213-233. doi: 10.1016/S0163-7258(02)00218-8

Yonekawa, W. D., Kupferberg, H. J., & Woodbury, D. M. (1980). Relationship between pentylenetetrazol-induced seizures and brain pentylenetetrazol levels in mice. Journal of Pharmacology and Experimental Therapeutics, 214(3), 589-593.